Air-side heat transfer enhancement of a refrigerator evaporator using vortex generation
نویسندگان
چکیده
In most domestic and commercial refrigeration systems, frost forms on the air-side surface of the air-to-refrigerant heat exchanger. Frost-tolerant designs typically employ a large fin spacing in order to delay the need for a defrost cycle. Unfortunately, this approach does not allow for a very high air-side heat transfer coefficient, and the performance of these heat exchangers is often air-side limited. Longitudinal vortex generation is a proven and effective technique for thinning the thermal boundary layer and enhancing heat transfer, but its efficacy in a frosting environment is essentially unknown. In this study, an array of delta-wing vortex generators is applied to a plain-fin-and-tube heat exchanger with a fin spacing of 8.5 mm. Heat transfer and pressure drop performance are measured to determine the effectiveness of the vortex generator under frosting conditions. For air-side Reynolds numbers between 500 and 1300, the air-side thermal resistance is reduced by 35–42% when vortex generation is used. Correspondingly, the heat transfer coefficient is observed to range from 33 to 53 W m K for the enhanced heat exchanger and from 18 to 26 W m K for the baseline heat exchanger. q 2005 Elsevier Ltd and IIR. All rights reserved.
منابع مشابه
Air-Side Heat Transfer Augmentation of a Refrigerator Evaporator Using Vortex Generation
In air-cooling applications with frost production, heat exchanger performance is often air-side limited, because the two-phase flow of the refrigerant provides excellent heat transfer coefficients, and because designers typically use a large air-side fin spacing for frost tolerance. The large fin spacing prolongs operation of the heat exchanger by mitigating the effect of the accumulating frost...
متن کاملEffect of Square Rod Aspect Ratio on Vortex Shedding Downstream the Rod and Heat Transfer Enhancement from the Neighboring Flat Plate
A rectangular rod is placed in a flow field flowing parallel to a flat plate. Effect of chord-thickness ratio of rectangular rod on developing vortex shedding downstream to the rod is studied. Then, for each one of the aspect ratios, the distance of the rod from the neighboring flat plate is reduced until the rod sticks to the flat plate. In each case, the effect of the flat plate boundary laye...
متن کاملEffect of Square Rod Aspect Ratio on Vortex Shedding Downstream the Rod and Heat Transfer Enhancement from the Neighboring Flat Plate
A rectangular rod is placed in a flow field flowing parallel to a flat plate. Effect of chord-thickness ratio of rectangular rod on developing vortex shedding downstream to the rod is studied. Then, for each one of the aspect ratios, the distance of the rod from the neighboring flat plate is reduced until the rod sticks to the flat plate. In each case, the effect of the flat plate boundary laye...
متن کاملThermodynamic Performance Limit and Evaporator Design Considerations for Narm-Based Domestic Refrigerator-Freezer Systems
Non-azeotropic refrigerant mixtures (NARMs) are investigated for a twotemperature level heat exchange process found in a domestic refrigerator-freezer. Ideal (constant air temperature) heat exchange processes are assumed. The results allow the effects of intercooling between the evaporator refrigerant stream and the condenser outlet stream to be examined in a systematic manner. For the conditio...
متن کاملHeat transfer enhancement in a spiral plate heat exchanger model using continuous rods
This study presents an innovative and simple way to increase the rate of heat transfer in a spiral plate heat exchanger model. Several circular cross-section rods, as continuous vortex generators, have been inserted within the spiral plate heat exchanger in the cross-stream plane. The vortex generators are located at various azimuth angles of α=30◦, 60◦, 90◦, and 120◦ with non-dimensional diame...
متن کامل